Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(7): 3212-3228, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621051

RESUMO

Methylmercury is a potent neurotoxin that biomagnifies through food webs and which production depends on anaerobic microbial uptake of inorganic mercury (Hg) species. One outstanding knowledge gap in understanding Hg methylation is the nature of bioavailable Hg species. It has become increasingly obvious that Hg bioavailability is spatially diverse and temporally dynamic but current models are mostly built on single thiolated ligand systems, omitting ligand exchanges and interactions, or the inclusion of dissolved gaseous phases. In this study, we used a whole-cell anaerobic biosensor to determine the role of a mixture of thiolated ligands on Hg bioavailability. Serendipitously, we discovered how the diffusion of trace amounts of exogenous biogenic H2 S, originating from anaerobic microbial ligand degradation, can alter Hg speciation - away from H2 S production site - to form bioavailable species. Regardless of its origins, H2 S stands as a mobile mediator of microbial Hg metabolism, connecting spatially separated microbial communities. At a larger scale, global planetary changes are expected to accelerate the production and mobilization of H2 S and Hg, possibly leading to increased production of the potent neurotoxin; this work provides mechanistic insights into the importance of co-managing biogeochemical cycle disruptions.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Anaerobiose , Ligantes , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Neurotoxinas , Poluentes Químicos da Água/metabolismo
2.
Environ Sci Technol ; 53(1): 157-165, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516365

RESUMO

The biological mobilization of mercury (Hg) into microbes capable of Hg methylation is one of the limiting steps in the formation of the neurotoxin methylmercury (MeHg). Although algal dissolved organic matter (DOM) has been associated with increased MeHg production, the relationship between bacterial Hg uptake and algal DOM remains unexplored. In this study, we aimed to address how the quantity and quality of DOM, freshly harvested from several algae, affected the bacterial uptake of Hg with the use of a biosensor capable of functioning both aerobically and anaerobically. We combined biosensor measurements with high-resolution mass spectrometry and field-flow fractionation to elucidate how DOM composition and molecular weight influenced microbial Hg uptake. We showed that freshly harvested DOM from Chlorophyte and Euglena mutabilis strongly inhibited aerobic and anaerobic Hg uptake, whereas DOM harvested from Euglena gracilis did not exhibit this same pronounced effect. Once fractionated, we found that amino acids and polyamines, most abundant in Euglena gracilis DOM, were positively correlated to increase Hg uptake, suggesting that these molecules are potentially underappreciated ligands affecting Hg bioavailability. As water quality is affected by eutrophication, algal community assemblages will change, leading to variations in the nature of autochthonous DOM released in aquatic systems. Our results highlight that variations in the emergent properties of DOM originating from varying algal species can have a profound effect on bacterial Hg uptake and thus methylation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Anaerobiose , Peso Molecular
3.
J Vis Exp ; (142)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30596384

RESUMO

Mercury (Hg) bioavailability to microbes is a key step to toxic Hg biomagnification in food webs. Cadmium (Cd) transformations and bioavailability to bacteria control the amount that will accumulate in staple food crops. The bioavailability of these metals is dependent on their speciation in solution, but more particularly under anoxic conditions where Hg is methylated to toxic monomethylmercury (MeHg) and Cd persists in the rhizosphere. Whole-cell microbial biosensors give a quantifiable signal when a metal enters the cytosol and therefore are useful tools to assess metal bioavailability. Unfortunately, most biosensing efforts have so far been constrained to oxic environments due to the limited ability of existing reporter proteins to function in the absence of oxygen. In this study, we present our effort to develop and optimize a whole-cell biosensor assay capable of functioning anaerobically that can detect metals under anoxic condition in quasi-real time and within hours. We describe how the biosensor can help assess how chemical variables relevant to the environmental cycling of metals affect their bioavailability. The following protocol includes methods to (1) prepare Hg and Cd standards under anoxic conditions, (2) prepare the biosensor in the absence of oxygen, (3) design and execute an experiment to determine how a series of variable affects Hg or Cd bioavailability, and (4) to quantify and interpret biosensor data. We show the linear ranges of the biosensors and provide examples showing the method's ability to distinguish between metal bioavailability and toxicity by utilizing both metal-inducible and constitutive strains.


Assuntos
Bactérias Anaeróbias/efeitos dos fármacos , Bioensaio/métodos , Técnicas Biossensoriais , Cádmio/química , Mercúrio/química , Anaerobiose , Bactérias Anaeróbias/metabolismo , Disponibilidade Biológica , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...